Mechanical characteristics of dissimilar friction stir welding processes of aluminium alloy [AA 2024-T351 and AA 7075-T651]

Author:

Gebreamlak Getachew,Palani SivaprakasamORCID,Sirahbizu Belete

Abstract

Aerospace industries have remained dependent on aluminium alloys for airframe structural components manufacturing due to their superior strength, fracture toughness, and ability to resist corrosion. Especially, AA2024 and AA7075 have been the most prominent and timely tested robust aluminium alloys in these manufacturing sectors. However, joining these aluminium alloys through conventional fusion welding is difficult. The present investigation focused on the mechanical and metallurgical properties of these high-strength dissimilar aluminium alloys 2024-T351 and 7075-T651 using a Friction Stir Welding (FSW) process. The effects of factors such as rotational speed RS (800–1200 rpm), welding speed WS (20–60 mm/min), and tool plunge depth (0.2–0.4 mm) on the ultimate tensile strength (UTS) and yield strength (YS) have been evaluated. The experimental procedure employed is based on RSM. The fractured surface morphology was investigated using SEM. The investigation result showed higher tensile strength (147 MPa) at the combination of welding parameters (1200 rpm, 60 mm/min, and 0.4 mm). The fabrication industries became the great beneficiaries of this emerging technology of the FSW.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3