Influence of light intensity and photoperiod on energy efficiency of biomass and pigment production of Spirulina (Arthrospira platensis)

Author:

Niangoran N’goran Urbain FlorentORCID,Buso David,Zissis GeorgesORCID,Prudhomme Thomas

Abstract

Biomass and photosynthetic pigments production of cyanobacteria, in particular Spirulina (Arthrospira platensis), depend on light intensity. Production cost of Spirulina cultivation in photobioreactor illuminated with LED is strongly related to light cost. This work is aimed to evaluate the effects of light intensity and photoperiod on the energy efficiency of biomass and pigment production of Spirulina platensis UTEX 1926. Cultures illuminated with white light-emitting diodes (LED) were carried out in batch mode cultivation. Three lighting scenarios with different light intensities were tested: two with a constant light intensity at 80 and 160 μmol · m−2 · s−1 and one with modulated light intensity. Concerning photoperiod, three cycles of light:dark (h:h) (24:00, 20:04 and 16:08) were studied under light intensity at 160 μmol · m−2 · s−1. Concerning Spirulina biomass and pigment production (phycocyanin, chlorophyll and carotenoids), it is found that the lower intensity tested allows a substantial increase of the process energy efficiency. Concerning the influence of the photoperiod, it has been found that the longer the off time is (up to 08 h 00 a day), the higher is the energy efficiency for Spirulina biomass as well as for pigmentary production.

Funder

Région Occitanie

Publisher

EDP Sciences

Subject

Agronomy and Crop Science,Biochemistry,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3