Did subduction in the western Mediterranean drive Neogene alpine dynamics? Insights from analogue modeling

Author:

Martinod JosephORCID,Daou Ayend-Christ,Métral LaurentORCID,Sue Christian

Abstract

In the Western Alps, a first Late Cretaceous to Eocene “Pyrenean-Provençal” compressive phase accommodating N-S shortening resulting from the convergence between Africa and Eurasia is classically described. It is followed by the Neogene “Alpine phase” accommodating E-W shortening. Since this major tectonic change is not explained by a modification of the global Africa-Eurasia convergence, it should be explained instead by more local causes, possibly by the subduction of the Ligurian Ocean that initiated in the Oligocene beneath the European and Iberian plates. In this paper, we present analogue models simulating the Neogene evolution of this subduction zone, in order to understand how it impacted the regional tectonics. Although models do not include the lithospheric plate overriding the subduction zone, their surface deformations share many similarities with the Neogene tectonics of Western Europe and Iberia. We observe that the tectonic evolution is largely controlled by the roll-back of the slab, that occurred much faster than the Africa-Eurasia convergence. Models reproduce the opening of the Western Mediterranean Basins and the dispersion of the AlKaPeCa continental fragments (Alboran, Kabylian, Peloritan and Calabrian blocks). They also show that the subduction of the Ligurian Ocean favors the counterclockwise rotation of Adria. In more elaborated models, we introduced a pre-existing weakness along the Africa and Adria margins, to reproduce the break-off of the oceanic slab that followed the beginning of continental subduction both in Northern Africa and Adria. Slab break-off is followed by the exhumation of the subducted continent. We observe that the influence of subduction on the kinematics of Adria largely decreases following slab break-off. In the models, the total counterclockwise rotation of Adria varies between 7° and more than 30°, depending on the timing of slab break-off. Since the process of subduction modifies the displacement of Adria, it also impacts the tectonic evolution of surrounding regions, especially in the Alpine belt: Our models show that during slab-roll back and before the Ligurian slab break-off, the azimuth of convergence between Adria and Europe shifts from ∼N-S to ∼ENE-WSW. Hence, they suggest that the oceanic subduction in the Western Mediterranean may contribute to the “Oligocene revolution” described by Dumont et al. (2011), leading to E-W shortening in the Western Alps and to the activation of the Periadriatic right-lateral shear zones in the Central Alps. We conclude that the western Mediterranean region is a spectacular example showing how the tectonics of mountain ranges and plate boundaries may be controlled by distant subduction processes.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3