Topographic, lithospheric and lithologic controls on the transient landscape evolution after the opening of internally-drained basins. Modelling the North Iberian Neogene drainage

Author:

Struth LucíaORCID,García-Castellanos DanielORCID,Rodríguez-Rodríguez LauraORCID,Viaplana-Muzas Marc,Vergés JaumeORCID,Jiménez-Díaz Alberto

Abstract

The opening of internally-drained (endorheic) sedimentary basins often leads to a major drainage change, re-excavation of the basin sedimentary infill, and transient landscape. The timing of such basin openings can be dated only in exceptional cases in which the youngest sedimentary infill remains preserved. For this reason, the processes and timing involved in their transient landscape evolution are poorly known. We explore the role of erodibility, basin geometry and flexural isostasy during the capture of internally-drained basins by means of numerical modelling techniques constrained by recent terrace cosmogenic dating and geomorphological analysis, addressing the issue as to why the Duero and Ebro rivers, draining two Cenozoic sedimentary basins in N Iberia with similar geographical dimensions and drainage histories, have undergone a markedly different erosion evolution leading to distinctly different present morphology. To evaluate how these intrinsic parameters affect the transient landscape evolution, we design a synthetic scenario inspired by those basins. The results show that, once a basin becomes externally drained, its drainage integration and erosion rates are strongly dependent on (1) the basin elevation above the base level; (2) the width of the topographic barrier, (3) its erodibility; and (4) the rigidity of the lithosphere. The results show that transient landscape evolution can last for tens of millions of years even in absence of tectonic activity and changes in base level or climate. Basins isolated by wide and resistant barriers such as the Duero Basin may undergo a multi-million-year time lag between drainage opening and basin-wide incision. In the case of the Duero Basin, this delay may explain the paradoxical time lag between the last lacustrine bulk sedimentation dated at 9.6 Ma and the onset of widespread basin incision variously estimated at 3.7 to 1 Ma.

Publisher

EDP Sciences

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3