Natural hydrogen potential and basaltic alteration in the Asal–Ghoubbet rift, Republic of Djibouti

Author:

Pasquet GabrielORCID,Idriss Amin Mohamed,Ronjon-Magand Lou,Ranchou-Peyruse MagaliORCID,Guignard MarionORCID,Duttine Mathieu,Ranchou-Peyruse AnthonyORCID,Moretti IsabelleORCID

Abstract

The Asal–Ghoubbet active rift in the Republic of Djibouti is a site of interest for geothermal energy and natural hydrogen, and previous studies have indicated that dihydrogen (H2) emanates from this rift. However, the well-known serpentinization reaction does not appear to be the main mechanism generating H2 at this site. Rather, the H2 is generated as follows: (1) by alteration of basaltic lava at depth via reaction with seawater flowing from Ghoubbet Bay towards Lake Asal; (2) by simple degassing of the volcanic chamber located a few kilometers below the Fiale Caldera in the rift axis; or (3) as a result of pyritization processes via the oxidation of H2S. Study of microorganisms did not indicate any production or consumption of H2, CO2, or CH4; therefore, it is unlikely that microorganisms affected H2 gas contents measured at the surface. However, air contamination at fumaroles is typically considerable and may limit interpretation of such processes. Drill cuttings from the Fiale 1 (F1) and Gale le Goma 1 (Glc1) wells (located on the inner and outer rift margins, respectively) were analyzed to determine where H2 is generated. Total rock analyses indicated distinct zones at depths of 464 m and 280 m for F1 and Glc1, respectively, representing the boundary between the Asal and Stratoïd Basalts. 57Fe Mössbauer analyses show a decrease in the percentage of Fe3+ at depth, indicating that Fe2+-rich minerals, particularly in the Stratoïd Basalts, may be a source of H2. Based on well data from the rift center and the outer rift margin, it is evident that H2 is present at the surface in the rift axis and that this area offers good remnant potential because of the presence of Fe-rich chlorite. Conversely, few H2 emissions were measured at the surface on the outer rift margins, although well data showed some H2 (∼0.25%) at depth. The presence of a cap rock in the rift axis has not yet been proven; however, the high loss on ignition and the mineralogy in well Glc1 may indicate that the rocks are sufficiently altered into clays to offer potential as a H2 seal. If so, the rift margins would offer greater exploration potential than the rift center.

Publisher

EDP Sciences

Subject

Geology

Reference95 articles.

1. Abdillahi MM. 2014. Predicting output curves for deep wells in Asal Rift, Djibouti. UNU-GTP 22.

2. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin?

3. Ahmed MM. 2018. Well design for the Asal geothermal field: a case study for well Glc-2. UNU-GTP 20.

4. Observations of seafloor spreading in Afar during the November 1978 fissure eruption

5. Microbial diversity and abundance in the hot springs on the west coast of Saudi Arabia as a potential source of novel industrial products

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3