Surface-derived fluid percolation along detachment systems enhanced by syn-kinematic granites: uranium mineralization as an application

Author:

Bock KhaledORCID,Branquet Yannick,Boulvais Philippe,Duretz Thibault

Abstract

Detachment zones are privileged areas for the interaction between surface-derived fluids and rocks, potentially leading to ore deposition. However, the hydrodynamics of detachments and specifically the way by which surface-derived fluids reach crustal depths, remain enigmatic. This question is even more puzzling when the heating caused by the emplacement of a syn-kinematic granite increases the buoyancy of fluids, thus impeding their descent. Here, 2D hydrothermal numerical models are performed. The geometry comprises a detachment and secondary normal faults in the hanging wall. Sensitivity tests were carried out to assess the impact of topographic gradients, syn-tectonic magmatic activity and the depth-dependent permeability contrast between the detachment and the crust. Several flow indicators, integrated over time and combined with particle tracking, enable us to highlight the main controls of fluid circulations. Our study reveals that the infiltration of surface-derived fluids into detachment zones is enhanced by the presence of a heat source at depth, such as a syn-kinematic pluton. Secondary faults are the main percolation path for surface-derived fluids infiltrating the detachment. Plume-like thermal anomalies have been spotted between these faults. The dynamic permeabilities of magmatic intrusions, which depend on sub-solidus temperatures, spatially and temporally reproduce the conceptual model of uranium mineralization in the South Armorican Variscan Domain, which is used as an example.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3