Space and time distribution of subsurface H2 concentration in so-called “fairy circles”: Insight from a conceptual 2-D transport model

Author:

Myagkiy Andrey,Moretti IsabelleORCID,Brunet Fabrice

Abstract

Natural H2 emissions from the ground have now been measured in many places worldwide. These emissions can be localized on faults or be more diffuse in some sedimentary basins, usually of Proterozoic age. In such a case, emanation zones are often visible from aerial images or on high-resolution topographic maps since they correspond to slight depressions of circular to elliptic shape. Furthermore, the rounded depressions are covered with a scrubby vegetation which often contrasts with the surrounding vegetation. Although the emission structure displays a very regular shape, the distribution of H2 concentration in the first meter of soil in such a structure does show a clear pattern. For example, the maximum concentration is almost never measured in the center of the structure and the few time-resolved data show that the soil H2 concentration is variable with time. Here, the time and space evolution of H2 concentration is simulated using a 2-D advective-diffusive model of H2 transport in porous media. Several parameters have been tested as the depth and periodicity of the H2 point source (pulsed), bacterial H2 consumption and permeability heterogeneities of the soil. The radius of the structure is linked to the time spent by the H2 in the soil that depends on the soil permeability, the depth of the gas leakage point and the pressure of the bubble. To account for field observations, the case of a shaly, less permeable, heterogeneity in the center of the structures has been modeled. It resulted in an increase of the concentration toward the rim of the structure and a close to zero signal in its center. If the deep signal is periodic with a frequency smaller than a few hours, H2 concentration within the soil is almost constant; in other cases, the near surface concentration wave reflects the concentration periodicity of the source with a delay (in the range of 12 h for 30 m of soil) and so the near surface H2 concentration values will be highly dependent on the time at which the measurement is performed. H2 monitoring through a sensor network is thus mandatory to characterize the H2 dynamics in the soil of fairy circles.

Funder

ENGIE

CNRS/INSU

Publisher

EDP Sciences

Subject

Geology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3