Decoding low-temperature thermochronology signals in mountain belts: modelling the role of rift thermal imprint into continental collision

Author:

Ternois SébastienORCID,Mouthereau FrédéricORCID,Jourdon AnthonyORCID

Abstract

Resolving the timing of initiation and propagation of continental accretion associated with increasing topography and exhumation is a genuinely challenging task using low-temperature thermochronology. We present an integrated thermo-mechanical and low-temperature thermochronology modelling study of tectonically-inverted hyperextended rift systems. Model low-temperature thermochronology data sets for apatite (U-Th)/He, apatite fission-track, zircon (U-Th)/He and zircon fission-track systems, which are four widely used thermochronometric systems in orogenic settings, are generated from fourteen locations across a model collisional, doubly-vergent orogen. Our approach allows prediction of specific, distinct low-temperature thermochronology signatures for each domain (proximal, necking, hyperextended, exhumed mantle) of the two rifted margins that, in turn, enable deciphering which parts of the margins are involved in orogenic wedge development. Our results show that a combination of zircon (U-Th)/He and apatite fission-track data allows diagnostic investigation of model orogen tectonics and offers the most valuable source of thermochronological information for the reconstruction of the crustal architecture of the model inverted rifted margins. The two thermochronometric systems have actually very close and wide closure windows, allowing to study orogenic processes over a larger temperature range, and therefore over a longer period of time. Comparison of model data for inverted rifted margins with model data for non-inverted, purely thermally-relaxed rifted margins enables assessing the actual contribution of tectonic inversion with respect to thermal relaxation. We apply this approach to one of the best-documented natural examples of inverted rift systems, the Pyrenees. Similarities between our thermochronometric modelling results and published low-temperature thermochronology data from the Pyrenees provide new insights into the evolution of the range from rifting to collision. In particular, they suggest that the core of the Pyrenean orogen, the Axial Zone, consists of the inverted lower plate necking and hyperextended domains while the Pyrenean retrowedge fold-and-thrust belt, the North Pyrenean Zone, represents the inverted upper plate distal rifted margin (exhumed mantle, hyperextended and necking domains). This is in good agreement with previous, independent reconstructions from literature, showing the power that our integrated study offers in identifying processes involved in orogenesis, especially early inversion, as well as in predicting which domains of rifted margins are accreted during mountain building.

Publisher

EDP Sciences

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3