The role of inheritance in forming rifts and rifted margins and building collisional orogens: a Biscay-Pyrenean perspective

Author:

Manatschal GianretoORCID,Chenin Pauline,Lescoutre Rodolphe,Miró Jordi,Cadenas Patricia,Saspiturry Nicolas,Masini Emmanuel,Chevrot SebastienORCID,Ford MaryORCID,Jolivet Laurent,Mouthereau Frédéric,Thinon Isabelle,Issautier Benoit,Calassou Sylvain

Abstract

A long-standing challenge in tectonics is to evaluate the role of inheritance and define the initial conditions of a geodynamic system, which are prerequisites to understand and model its evolution with some accuracy. Here we revisit the concept of “inheritance” by distinguishing “interface shape inheritance”, which includes the transient thermal state and gravitational potential energy, and “persisting inheritance”, which encompasses long-lasting structural and compositional inheritance. This new approach allows us to investigate, at each stage of a Wilson Cycle, the interplay between inheritance (innate/“genetic code”) and the physical processes at play (extension/compression, magmatism etc.). The aim of this paper is to provide a conceptual framework that integrates the role of inheritance in the study of rifts, rifted margins and collisional orogens based on the work done in the OROGEN project, which focuses on the Biscay-Pyrenean system. The Biscay-Pyrenean rift system resulted from a multistage rift evolution that developed over a complex lithosphere pre-structured by the Variscan orogenic cycle. There is a general agreement that the Pyrenean-Cantabrian orogen resulted from the reactivation of an increasingly mature rift system along-strike, ranging from mature rifted margins in the west to an immature and segmented hyperextended rift in the east. However, different models have been proposed to explain the preceding rifting and its influence on the subsequent reactivation. Results from the OROGEN project highlight the sequential reactivation of rift-inherited decoupling horizons and identify the specific role of exhumed mantle, hyperextended and necking domains during compressional reactivation. They also highlight the contrasting fate of rift segment centres versus segment boundaries during convergence, explaining the non-cylindricity of internal parts of collisional orogens. Results from the OROGEN project also suggest that the role of inheritance is more important during the initial stages of collision, which may explain the higher complexity of internal parts of orogenic systems with respect to their external parts. In contrast, when the system involved in the orogeny is more mature, the orogenic evolution is mostly controlled by first-order physical processes as described in the Coulomb Wedge theory, for instance. This may account for the simpler and more continuous architecture of external parts of collisional orogens and may also explain why most numerical models can reproduce mature orogenic architectures with a better accuracy compared to those of initial collisional stages. The new concepts developed from the OROGEN research are now ready to be tested at other orogenic systems that result from the reactivation of rifted margins, such as the Alps, the Colombian cordilleras and the Caribbean, Taiwan, Oman, Zagros or Timor.

Publisher

EDP Sciences

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3