Membraneless physiology of the living cell. The past and the present

Author:

Matveev Vladimir V.ORCID

Abstract

Since the 1880s, the concept of compartmentalizing through membranes has taken a firm place in cell physiology and has defined the objects, methods, and goals of physiologists’ research for decades. A huge mass of biologists know about the important role of intra-membrane pumps, channels, and lipids, and various hypotheses about the origin of life often begin with explanations about how the lipid membrane occurred, without which it is impossible to imagine the origin of a living cell. Against this background, there was a dissonance of statements that there are membraneless organelles in the cell, the functions of which are rapidly expanding under our eyes. Physically, they are similar to coacervate droplets, which from time to time were used to explain the origin of life, and now the coacervates are being more and more often discussed when describing the physics of the nucleus and cytoplasm of modern cells. However, ideas about the coacervate nature of cytoplasm/protoplasm originated in the first half of the 19th Century, when the contents of cells were likened to jelly, but this approach gradually faded into the shadows. Nevertheless, limited research in this area continued and was completed in the form of a membraneless cell physiology. Now that the focus of attention has turned to membraneless compartmentalization, it’s time to remember the past. The sorption properties of proteins are the physical basis of membraneless cell because of water adsorbed by proteins changes the physical state of any biomolecular system, from supramolecular and subcellular structures to the cell as a whole. A thermodynamic aqueous phase is formed because adsorbed water does not mix with ordinary water and, in this cause, is separated from the surrounding solution in the form of a compartment. This article discusses the fundamental physical properties of such a phase – a biophase. As it turned out, the Meyer–Overton rule, which led to the idea of a lipid membrane, also applies to membraneless condensates.

Publisher

EDP Sciences

Subject

Applied Mathematics,General Mathematics

Reference80 articles.

1. Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation

2. Protein Phase Separation: A New Phase in Cell Biology

3. Ling GN (2001), Life at the cell and below-cell level: the hidden history of a fundamental revolution in biology, Pacific Press, New York.

4. The nucleolus as a multiphase liquid condensate

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3