Introduction to logical entropy and its relationship to Shannon entropy

Author:

Ellerman DavidORCID

Abstract

We live in the information age. Claude Shannon, as the father of the information age, gave us a theory of communications that quantified an “amount of information,” but, as he pointed out, “no concept of information itself was defined.” Logical entropy provides that definition. Logical entropy is the natural measure of the notion of information based on distinctions, differences, distinguishability, and diversity. It is the (normalized) quantitative measure of the distinctions of a partition on a set-just as the Boole–Laplace logical probability is the normalized quantitative measure of the elements of a subset of a set. And partitions and subsets are mathematically dual concepts – so the logic of partitions is dual in that sense to the usual Boolean logic of subsets, and hence the name “logical entropy.” The logical entropy of a partition has a simple interpretation as the probability that a distinction or dit (elements in different blocks) is obtained in two independent draws from the underlying set. The Shannon entropy is shown to also be based on this notion of information-as-distinctions; it is the average minimum number of binary partitions (bits) that need to be joined to make all the same distinctions of the given partition. Hence all the concepts of simple, joint, conditional, and mutual logical entropy can be transformed into the corresponding concepts of Shannon entropy by a uniform non-linear dit-bit transform. And finally logical entropy linearizes naturally to the corresponding quantum concept. The quantum logical entropy of an observable applied to a state is the probability that two different eigenvalues are obtained in two independent projective measurements of that observable on that state.

Funder

No funding

Publisher

EDP Sciences

Reference83 articles.

1. Birkhoff G (1948), Lattice theory, American Mathematical Society, New York.

2. Grätzer G (2003), General Lattice Theory, 2nd edn., Birkhäuser Verlag, Boston.

3. THE LOGIC OF PARTITIONS: INTRODUCTION TO THE DUAL OF THE LOGIC OF SUBSETS

4. An introduction to partition logic

5. Lawvere FW, Rosebrugh R (2003), Sets for mathematics, Cambridge University Press, Cambridge, MA.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3