More on algebraic properties of the discrete Fourier transform raising and lowering operators

Author:

Atakishiyeva Mesuma K.,Atakishiyev Natig M.ORCID,Loreto-Hernández Juan

Abstract

In the present work, we discuss some additional findings concerning algebraic properties of the N-dimensional discrete Fourier transform (DFT) raising and lowering difference operators, recently introduced in [Atakishiyeva MK, Atakishiyev NM (2015), J Phys: Conf Ser 597, 012012; Atakishiyeva MK, Atakishiyev NM (2016), Adv Dyn Syst Appl 11, 81–92]. In particular, we argue that the most authentic symmetrical form of discretization of the integral Fourier transform may be constructed as the discrete Fourier transforms based on the odd points N only, while in the discrete Fourier transforms on the even points N this symmetry is spontaneously broken. This heretofore undetected distinction between odd and even dimensions is shown to be intimately related with the newly revealed algebraic properties of the above-mentioned DFT raising and lowering difference operators and, of course, is very consistent with the well-known formula for the multiplicities of the eigenvalues, associated with the N-dimensional DFT. In addition, we propose a general approach to deriving the eigenvectors of the discrete number operators N(N), that avoids the above-mentioned pitfalls in the structure of each even-dimensional case N = 2L.

Publisher

EDP Sciences

Reference11 articles.

1. Atakishiyeva MK, Atakishiyev NM (2015), On the raising and lowering difference operators for eigenvectors of the finite Fourier transform. J Phys: Conf Ser 597, 012012

2. Atakishiyeva MK, Atakishiyev NM (2016), On algebraic properties of the discrete raising and lowering operators, associated with the N-dimensional discrete Fourier transform. Adv Dyn Syst Appl 11, 81–92

3. Sylvester JJ (1867), Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers. Philos Mag 34, 461–475

4. Koekoek R, Lesky PA, Swarttouw RF (2015), Hypergeometric orthogonal polynomials and their q-analogues, Springer-Verlag, Berlin, Heidelberg

5. Landau LD, Lifshitz EM (1991), Quantum mechanics (non-relativistic theory), Pergamon Press, Oxford

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3