Optomagnetic Imaging Spectroscopy (OMIS) for in situ detection of bacteria in blood – feasibility study

Author:

Garry Brittany,Stoiljkovic Nikola,Jovic Zorana,Pavlovic Radmila,Getnet Derese,Demons Samandra T.,Tyner Stuart D.,Zurawski Daniel V.,Swierczewski Brett E.,Koruga Djuro,Bobrov Alexander G.,Antonic Vlado

Abstract

Introduction: Sepsis is one of the leading causes of death in military and civilian hospitals. Rapid identification of involved pathogens is a key step for appropriate diagnosis, treatment and ultimately survival. Current diagnostics tools are either very bulky and not deployment ready, or require a long time to provide results. Given these obstacles, new solutions are urgently needed. Optomagnetic Imaging Spectroscopy (OMIS) is novel technology successfully used for the detection of cancer cells and viruses. OMIS has high sensitivity due to recording the unpaired and paired electrons of sample material. Furthermore, machine learning that uses the algorithms random forest (RF) classifier and artificial neural network (ANN) is integrated into the technology to enhance detection. Here we evaluated the feasibility of OMIS for the detection of bacteria in blood. Methods: We used commercially available human blood spiked with a defined concentration multidrug resistant Staphylococcus aureus derived from a clinical isolate. Final concentrations of bacteria of 1 × 106, 1 × 105 and 1 × 104 CFU/mL corresponding to High (H), Medium (M) and Low (L) concentrations respectively. A total of 240 samples (60 samples per concentration as well as 60 samples of sterile blood (N)) was imaged, and the data were analyzed using random forest classifier and artificial neural network. Images for the training set and validation sets were separately obtained and used for comparison against true positive values (confirmatory plating on the nutrient agar). Results: The average score of classification samples in the correct category (N, L, M, H) one-by-one was 94% for the ANN algorithm, while for the RF algorithm accuracy was 93% (average means that three times different 40 samples (of 240 samples) were chosen, and each prediction test had different sample mixtures). The closeness of the two values of accuracy strongly indicates that the input data (interaction of light with paired and unpaired electrons) and output data (classification N, L, M, H concentration of bacteria) are correlated.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3