Abstract
Post-synthetic modification of inorganic nanoparticles (NPs) provides a unique lesser synthetically demanding opportunity to access nanomaterials those are oftentimes not directly realizable by conventional synthetic routes. Trivalent lanthanide (Ln3+) incorporated (doped) semiconductor NPs can benefit from individual properties of the NPs and Ln3+ moieties. This work summarizes key outcomes from experiments when (a) ZnS /CdS /CdSe NPs are post-synthetically treated with Ln3+ to generate ZnS/Ln or CdSe/Ln [Ln = Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb] and CdS/Ln [Eu, Tb] NPs, (b) synthetically Tb3+ doped Zn(Tb)S NPs are post-synthetically modified with varying concentration of heavy metals like Pb2+/Cd2+ to generate Zn(Tb)S/M [M = Pb, Cd] NPs, and (c) the pH of Zn(Tb)S NPs aqueous dispersion is varied post-synthetically. Key observations from these experiments include (a) incorporation of Ln in all the post-synthetically prepared CA/Ln NPs, with presence of host sensitized dopant emission in select cases that can be rationalized by a charge trapping mediated dopant emission sensitization processes, (b) existence of rich photophysics in the sub-stoichiometric reactant concentration ratio, and (c) identifying the alteration of surface capping ligand structure as an important variable to control the Ln3+ emission. In summary, these experimental observations provide an easy control of reaction conditions either to generate Ln3+ inorganic NP luminophores or to control their electronic properties by modulating either the NP’s core or surface properties, and are of potential usefulness in various luminescence based applications.
Funder
Science and Engineering Research Board
University Grants Commission
Subject
Applied Mathematics,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献