Improving energy efficiency of school buildings during winter season using passive design strategies

Author:

Zahiri Sahar,Altan HasimORCID

Abstract

Passive building design can improve energy efficiency of buildings, while providing comfortable indoor environment for occupants with minimum mechanical energy use. The foundation of passive design depends on natural sources of energy, which uses building architecture and surrounding environment to minimise heating and cooling loads of buildings with minimum operating and maintenance costs. The correlation of local climate with shape and thermal performance of buildings is one of the main considerations of passive design approach to reduce energy use and increase thermal comfort of occupants. This paper focuses on a series of field studies and building simulation analysis to improve thermal performance of female secondary school buildings in the city of Tehran in Iran during winter season using passive design strategies. The field studies included measuring indoor air temperature, as well as a questionnaire-based survey in a cold winter season in a typical female secondary school building. The on-site monitoring assessed indoor air temperature of classrooms while the occupants completed questionnaires covering their thermal sensations and thermal preferences. Moreover, building thermal simulation analysis were carried out using DesignBuilder tool to evaluate and improve thermal performance of classrooms based on students' thermal requirements and passive design strategies. The simulation analysis started from the basic school building model, investigating various passive design strategies to predict the optimum design strategies for the case study. The simulation results determined how to provide classrooms that are more comfortable for students with minimum energy use. The results of the field studies indicated that indoor thermal environment were usually comfortable for female students based on 7-point ASHRAE scale. However, most of the occupants preferred their indoor thermal environment to be improved. Moreover, simulation results showed that building fabrics and thermal properties, as well as glazing and orientation had significant impacts on indoor air temperature and thermal comfort and using appropriate passive design strategies could improve energy efficiency of the building considerably. Therefore, in order to enhance indoor thermal environment and to increase learning performance of students, it is necessary to use appropriate low energy methods, which can reduce the needs for mechanical energy systems and hence save energy.

Publisher

EDP Sciences

Reference51 articles.

1. Mikler V., Bicol A., Breisness B., Labrie M., Passive Design Toolkit, Vancouver, City of Vancouver, 2009

2. Passive Design Toolkits for Homes, Vancouver, City of Vancouver, 2009

3. O'Connor J., Lee E., Rubinstein F., Selkowitz S., Tips for daylighting. The California Institute for Energy Efficiency (CIEE), The U.S. Department of Energy, Berkeley, CA, 1997

4. Sheta W.A.M., Keeping Cool in Cairo: Thermal Simulation of Passive Cooling in Dwellings, PhD thesis, The University of Sheffield, 2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3