Abstract
In this paper, we modified a Courant-Beltrami penalty function method for constrained optimization problem to study a duality for convex nonlinear mathematical programming problems. Karush-Kuhn-Tucker (KKT) optimality conditions for the penalized problem has been used to derived KKT multiplier based on the imposed additional hypotheses on the constraint function g. A zero-duality gap between an optimization problem constituted by invex functions with respect to the same function η and their Lagrangian dual problems has also been established. The examples have been provided to illustrate and proved the result for the broader class of convex functions, termed invex functions.
Subject
Control and Optimization,Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献