A genetic algorithm based optimization framework to visualize, evaluate, and modify 3D space configurations in Desktop VR

Author:

Chandramouli Magesh,Bertoline Gary R.

Abstract

This paper presents the design and implementation of a Desktop VR (Virtual Reality) framework for generating and evaluating Pareto-optimal alternate 3D spatial configurations using GA (genetic algorithms). The 3-tier framework involves the generation of the Pareto-optimal plans using GA which are subsequently visualized first using a Java-based 2D Interface and finally in the form of a 3D VR scene. The search spaces (function domains) are extremely large in today’s multifaceted interior design situations, and the optimization procedure involves conflicting objective functions, and limitations in the form of constraint functions. The interior space allocation problem is formulated and implemented as the “optimal configuration of artifacts”. When using GAs, a group of Pareto-optimal solutions (Pareto set) are available for the planners and decision-makers, wherefrom one solution ought to be picked. Therefore, this study applies a tool to not only visually evaluate the plans, but also to interact with those plans to develop them further if needed. Besides enabling the optimal spatial configuration of the scene elements, this framework also facilitates evaluation and interaction via the 3D VR worlds. The framework aids the proactive exploration, analysis, and finalization of design aspects such as color, size, lighting, etc. of the various elements prior to the actual construction. The results demonstrate the robust performance of the GA and the final 3D VR environment with dynamic interactive capabilities. This final interface facilitates “GA-Compliant” transformations and scene modifications thereby facilitating the exploration and examination of alternative scene configurations.

Publisher

EDP Sciences

Subject

Control and Optimization,Modeling and Simulation

Reference33 articles.

1. Ballast DK. 2002. Interior construction & detailing for designers and architects. Professional Publications: Belmont, CA.

2. Pile JF. 2007. Interior design, 4th edn. Prentice Hall, Upper Saddle River, NJ.

3. Piotrowski CM. 2002. Professional practice for interior designers, 3rd edn. John Wiley & Sons: New York.

4. Vosinakis S, Azariadis P, Sapidis N, Kyratzi S. 2007. A virtual reality environment supporting the design & evaluation of interior spaces, 4th INTUITION Conf. on Virtual Reality & Virtual Environments, Athens.

5. Artificial evolution for computer graphics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Suggestion-Based Interaction System for Spacecraft Design in Augmented Reality;2021 IEEE Aerospace Conference (50100);2021-03-06

2. Posture prediction and optimization for a manual assembly operation involving lifting of weights;International Journal for Simulation and Multidisciplinary Design Optimization;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3