Topology optimization of the multi-fasteners jointed structure considering fatigue constraints

Author:

Hou Jie,Zhu Jihong,Wang Jie,Zhang Weihong

Abstract

This paper is to present an important issue of fatigue failure in the design of multi-fasteners jointed structure. To avoid failure in the connection area, Sines criterion is utilized. Fatigue constraints are handled in the context of stress based topology optimization. To eliminate the high stresses caused by the finite element modeling, the control volume is defined to evaluate the stress states around the fasteners. The standard topology optimization is extended to minimize the structural compliance with fatigue failure constraints. To address singularity problems related to stress constraints, q-p relaxation is used. P-norm is used as the constraints aggregation scheme. Basing on the above, the design sensitivity of fatigue constraints is derived and calculated. The proposed method is verified by a numerical example of an assembled I-beam. The comparisons of the numerical results have shown the effect of the fatigue constraint.

Publisher

EDP Sciences

Subject

Control and Optimization,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear fatigue damage constrained topology optimization;Computer Methods in Applied Mechanics and Engineering;2024-09

2. Topology Optimization to Fracture Resistance: A Review and Recent Developments;Archives of Computational Methods in Engineering;2024-01-10

3. Coupled topology optimization of structure and connections for bolted mechanical systems;European Journal of Mechanics - A/Solids;2022-05

4. Lightweight Research in Engineering: A Review;Applied Sciences;2019-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3