Thermal mechanical characterization of copolyester for additive manufacturing using FDM

Author:

Abouzaid Khaoula,Guessasma Sofiane,Belhabib Sofiane,Bassir David,Chouaf Abdelkrim

Abstract

The main purpose of this study is to highlight the thermal and mechanical characterization of printed copolyester-based polymer. The variety of benefits of this material, such as its food contact compliance and important mechanical properties, have proved to be effective in huge field of applications, including medical sector and packaging uses. However, it has not received much attention for 3D printing processes. As the printing temperature is a key parameter of fused deposition modeling (FDM) process, the present study is started by analyzing its effect on the mechanical properties of printed copolyester under tensile loading. Indeed, the determination of temperature optimal values to print this material with FDM process is done based on tensile properties, including tensile strength, Young's modulus, ultimate tensile and yield strength, ductility and fracture toughness. The fracture properties of printed copolyester are also discussed using “scanning electron microscopy” (SEM). The results indicate a strong effect of the extrusion temperature on tensile properties. In addition, the analysis of copolyester sample microstructure reveals several damage mechanisms within the printed parts that reflect different types of wires fracture form subjected to the same tensile loading.

Publisher

EDP Sciences

Subject

Control and Optimization,Modelling and Simulation

Reference31 articles.

1. ISO/ASTM WD 5293 2, Additive manufacturing − Environmental health and safety − Standard test method for determination of particle emission rates from desktop 3D printers using material extrusion, 2012

2. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach

3. Mechanical characterization of parts fabricated using fused deposition modeling

4. Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3