Leagile supply chain network design through a dynamic two-phase optimization in view of order penetration point

Author:

Rabbani Masoud,Aghamohamadi-Bosjin Soroush,Manavizadeh Neda

Abstract

In the contemporary world, combining the concept of agile and lean manufacturing (LM) is one of the most strategic and appealing concerns in the industrial environments. In this paper, a new Leagile structure is proposed for a supply chain. This research covers long term and mid-term horizon by designing a supply chain network up to the order penetration point (OPP) and final assembly and sale planning respectively. The problem is programmed in two phases. First, a bi-objective optimization is developed to minimize the total cost related with LM. In the second phase, the total cost and the customer service level (CSL) are considered as the agile manufacturing (AM) architecture. In the proposed model, a utility function is applied to set balance between the price and customer satisfaction. In addition, a robust credibility-based fuzzy programming (RCFP) is developed to handle uncertainty of the first phase. The proposed model and the solution method are implemented for a real industrial case study to show the applicability and usefulness of this study. According to the results, improving the customer service level can enhance the total cost of the second phase meaning that customer responsiveness price is too high for the proposed system.

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative insights into the integrated push and pull production problem for lean supply chain planning 4.0;International Journal of Production Research;2024-02-07

2. Exploring Agile Methods Application in Manufacturing;IFIP Advances in Information and Communication Technology;2024

3. Optimisation Modeling for Lean, Resilient, Flexible and Sustainable Supply Chain Planning;Lecture Notes on Data Engineering and Communications Technologies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3