A ranking framework based on interval self and cross-efficiencies in a two-stage DEA system

Author:

Kremantzis Marios DominikosORCID,Beullens Patrick,Klein Jonathan

Abstract

The evaluation of the performance of a decision-making unit (DMU) can be measured by its own optimistic and pessimistic multipliers, leading to an interval self-efficiency score. While this concept has been thoroughly studied with regard to single-stage systems, there is still a gap when it is extended to two-stage tandem structures, which better correspond to a real-world scenario. In this paper, we argue that in this context, a meaningful ranking of the DMUs is obtained; this outcome simultaneously considers the optimistic and pessimistic viewpoints within the self-appraisal context, and the most favourable and unfavourable weight sets of each of the other DMUs in a peer-appraisal setting. We initially extend the optimistic-pessimistic Data Envelopment Analysis (DEA) models to the specifications of such a two-stage structure. The two opposing self-efficiency measures are merged to a combined self-efficiency measureviathe geometric average. Under this framework, the DMUs are further evaluated in a peer settingviathe interval cross-efficiency (CE). This methodological tool is applied to evaluate the target DMU in relation to the most favourable and unfavourable weight profiles of each of the other DMUs, while maintaining the combined self-efficiency measure. We, thus, determine an interval individual CE score for each DMU and flow. By treating the interval CE matrix as a multi-criteria decision making problem and by utilising several well-established approaches from the literature, we delineate its remaining elements; we show how these lead us to a meaningful ultimate ranking of the DMUs. A numerical example about the efficiency evaluation of ten bank branches in China illustrates the applicability of our modelling approaches.

Funder

engineering and physical sciences research council

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3