Generation of random chordal graphs using subtrees of a tree

Author:

Şeker Oylum,Heggernes Pinar,Ekim Tinaz,Taşkın Z. Caner

Abstract

Chordal graphs form one of the most studied graph classes. Several graph problems that are NP-hard in general become solvable in polynomial time on chordal graphs, whereas many others remain NP-hard. For a large group of problems among the latter, approximation algorithms, parameterized algorithms, and algorithms with moderately exponential or sub-exponential running time have been designed. Chordal graphs have also gained increasing interest during the recent years in the area of enumeration algorithms. Being able to test these algorithms on instances of chordal graphs is crucial for understanding the concepts of tractability of hard problems on graph classes. Unfortunately, only few published papers give algorithms for generating chordal graphs. Even in these papers, only very few methods aim for generating a large variety of chordal graphs. Surprisingly, none of these methods is directly based on the “intersection of subtrees of a tree” characterization of chordal graphs. In this paper, we give an algorithm for generating chordal graphs, based on the characterization that a graph is chordal if and only if it is the intersection graph of subtrees of a tree. Upon generating a random host tree, we give and test various methods that generate subtrees of the host tree. We compare our methods to one another and to existing ones for generating chordal graphs. Our experiments show that one of our methods is able to generate the largest variety of chordal graphs in terms of maximal clique sizes. Moreover, two of our subtree generation methods result in an overall complexity of our generation algorithm that is the best possible time complexity for a method generating the entire node set of subtrees in an “intersection of subtrees of a tree” representation. The instances corresponding to the results presented in this paper, and also a set of relatively small-sized instances are made available online.

Funder

Türkiye Bilimler Akademisi

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3