On the computational difficulty of the terminal connection problem

Author:

de Melo Alexsander A.ORCID,de Figueiredo Celina M.H.ORCID,Souza Uéverton S.ORCID

Abstract

A connection tree of a graph G for a terminal set W is a tree subgraph T of G such that leaves(T) ⊆ WV(T). A non-terminal vertex is called linker if its degree in T is exactly 2, and it is called router if its degree in T is at least 3. The Terminal connection problem (TCP) asks whether G admits a connection tree for W with at most ℓ linkers and at most r routers, while the Steiner tree problem asks whether G admits a connection tree for W with at most k non-terminal vertices. We prove that, if r ≥ 1 is fixed, then TCP is polynomial-time solvable when restricted to split graphs. This result separates the complexity of TCP from the complexity of Steiner tree, which is known to be NP-complete on split graphs. Additionally, we prove that TCP is NP-complete on strongly chordal graphs, even if r ≥ 0 is fixed, whereas Steiner tree is known to be polynomial-time solvable. We also prove that, when parameterized by clique-width, TCP is W[1]-hard, whereas STeiner tree is known to be in FPT. On the other hand, agreeing with the complexity of Steiner tree, we prove that TCP is linear-time solvable when restricted to cographs (i.e. graphs of clique-width 2). Finally, we prove that, even if either ℓ ≥ 0 or r ≥ 0 is fixed, TCP remains NP-complete on graphs of maximum degree 3.

Funder

CAPES

CNPq

FAPERJ

Publisher

EDP Sciences

Subject

Computer Science Applications,General Mathematics,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3