Author:
Zhu Yuyang,Huang Jing,Wang Lili,Li Ming
Abstract
This paper generalizes Wolstenholme theorem on two aspects. The first generalization is a parameterized form: let p > k + 2, k ≥ 1, ∀t ∈ ℤ, then
${{(pt + p - 1)!} \over {(pt)!}}\mathop \sum \limits_{m = 0}^{k - 1} {( - 1)^m}\mathop \sum \limits_{1 \le {i_l} < \cdots < {i_{k - m}} \le p - 1} {{{p^{k - (m + 1)}}} \over {\mathop \prod \limits_{l = 1}^{k - m} (pt + {i_l})}} \equiv 0{\left( {\bmod {p^{k + 1}}} \right)^.}$
The second generalization is on composite number module:
Let 1overa be the x in congruent equation ax ≡ 1(mod m)(1 ≤ x < m),
if m ≥ 5, then
$$\matrix{
{\sum\limits_{\scriptstyle (k,m) = 1, \hfill \atop
\scriptstyle 1 \le j \le m \hfill} {{{\left( {{1 \over k}} \right)}^2}} } \hfill & \equiv \hfill & {{m \over 6}[2m\varphi (m) + \prod\limits_{p|m} {(1 - p)]{{(\bmod m)}^{\;;}}} } \hfill \cr
{\sum\limits_{\scriptstyle (k,m) = 1, \hfill \atop
\scriptstyle 1 \le j \le m \hfill} {{{\left( {{1 \over k}} \right)}^3}} } \hfill & \equiv \hfill & {{{{m^2}} \over 4}[m\varphi (m) + \prod\limits_{p|m} {(1 - p)](\bmod m){\;^;}} } \hfill \cr
{\sum\limits_{\scriptstyle (k,m) = 1, \hfill \atop
\scriptstyle 1 \le j \le m \hfill} {{{\left( {{1 \over k}} \right)}^4}} } \hfill & \equiv \hfill & {{m \over {30}}[6{m^3}\varphi (m) + 10{m^2}\prod\limits_{p|m} {(1 - p) - \prod\limits_{p|m} {(1 - {p^3})](\bmod m){\;^;}} } } \hfill \cr
{\sum\limits_{\scriptstyle (k,m) = 1, \hfill \atop
\scriptstyle 1 \le j \le m \hfill} {{{\left( {{1 \over k}} \right)}^r}} } \hfill & \equiv \hfill & {{m^r}\sum\limits_{d|m} {\mu (d){{\left( {{m \over d}} \right)}^{ - r}}\sum\limits_{k = 1}^{{m \over d}} {{k^r}(\bmod m){\;^.}} } } \hfill \cr } $$
Where φ(x) is Euler function , μ(x) is Möbius function.