A Referenced Cyber Physical System for Compressor Manufacturing

Author:

Cao Jin,Wang Junliang,Lu Junqing

Abstract

Compressor is a typical high-end discrete product,with the shortening of product life cycle and the enhancement of the degree of product customization, the traditional compressor manufacturing system architecture cannot meet the requirements of comprehensive digital management of compressor from body scheme design to parts production line, logistics management, operation and maintenance monitoring and evaluation. This paper presents a compressor manufacturing system architecture based on digital twinning, and establishes an Internet platform for compressor industry oriented to remote coordination from three aspects of compressor design, production, operation and maintenance. The platform includes industrial Internet infrastructure layer, physical space entity model layer, virtual space multidimensional model layer, physical space and virtual space multidimensional model correlation and mapping layer, big data intelligent analysis decision-making layer, and digital twin application layer. Through the establishment of the compressor product design and simulation model of digital twin, compressor production process digital twin model, compressor fault diagnosis and remote operations digital twin model, implementation is based on the number of compressor collaboration in manufacturing industrial Internet platform twin system, leading the transformation and upgrading of intelligent manufacturing industry, compressor industry sustainable development ability and international competitiveness.

Publisher

EDP Sciences

Subject

General Medicine

Reference25 articles.

1. Conry R D. Compressor: U.S. Patent 5,857, 348(1999)

2. Boschert S, Rosen R. Digital twin—the simulation aspect (Mechatronic Futures, Cham, 2016)

3. Castellanos I D, Stine J E. Compressor trees for decimal partial product reduction[C]//Proceedings of the 18th ACM Great Lakes symposium on VLSI. ACM, 107-110 (2008)

4. Prytz R, Nowaczyk S, Rögnvaldsson T, et al. Predicting the need for vehicle compressor repairs using maintenance records and logged vehicle data, Engineering applications of artificial intelligence, 41,139-150 (2015)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3