Heavy overload forecasting of distribution transformers based on neural network

Author:

Xie Haining,Tian Yingjie,Zhu Wei,Hu Zhongyu

Abstract

The overload management is significance component in distribution network operation and maintenance to improve electricity service. According to the periodic characteristics of the electric load, this paper designs a new method to identify and predict the heavy overload states and highlight the dates where the distribution transformer most likely heavy overload through the historical load rate and meteorological data. The Attention-GRU neural network is introduced to predict electric load rate of the highlight dates to improve the prediction efficiency. In comparison with the performances traditional LSTM in prediction of distribution transformers, results show that the new method has higher accuracy and efficiency in predicting highlight dates’ load rates.

Publisher

EDP Sciences

Subject

General Medicine

Reference10 articles.

1. WANG jiye, Big Data of Smart Grid, third ed., China Electric Power Press, Beijing, 2017.

2. Jianzhang HE, Haibo WANG, Zhixiang JI, Analysis of Factors Affecting Distribution Transformer Overload in Smart Grid, Power System Technology.41(1)(2017):279–284.

3. Jianzhang HE, Haibo WANG, Zhixiang JI, Heavy Overload Forecasting of Distribution Transformers Based on Random Forest Theory, Power System Technology.41(8)(2017):2594–2597.

4. LI M, ZHOU Q. Distribution transformer mid-term heavy and over load pre-warning based on logistic regression,2015 IEEE Eindhoven Powertech, Netherlands, 2015:1–5.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3