Crack initiation prediction of additive manufactured ductile nickelbased superalloys

Author:

Lindström Thomas,Eriksson Robert,Ewest Daniel,Simonsson Kjell,Lundgren Jan-Erik,Leidermark Daniel

Abstract

A model to predict crack initiation life of an additive manufactured nickel-based superalloy similar to Hastelloy X subjected to low-cycle fatigue loading at room temperature has been developed, taking material anisotropy into account. An anisotropic constitutive model based on the Hill yield criterion was developed, with linear kinematic hardening up to a saturation value of the back stress, above which the material behaves perfectly plastic. Low-cycle fatigue experiments has been performed on additive manufactured smooth bars with two different build orientations, with an angle of 0⁰ and 90⁰ relative to the building platform. A total of 20 experiments at room temperature were conducted with different strain ranges and R-values. To predict the crack initiation life of the specimens, a model based on the Smith-Watson-Topper (SWT) parameter has been established, where ten of the specimens were used to calibrate the initiation model, and the remaining specimens were used for validation. Using this model, the obtained crack initiation life agrees well with the experiments.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3