Fatigue life assessment regarding different influences on the HCF/VHCF behavior of a martensitic steel

Author:

Milošević Igor,Seisenbacher Benjamin,Winter Gerhard,Grün Florian,Kober Martin

Abstract

Modern applications require a special treatment when the conventional specimen size is much larger than the component size. Additional to that, high sophisticated materials are used for highly loaded components. Often the conventional fatigue limit is exceeded and loads are applied in the VHCF regime. Focus was put on the lifetime calculation and the implementation of investigated fatigue data of a X5CrNiCuNb-16-4 type steel. Two specimen geometries with diameters D7.5=7.5 mm and D2.5=2.5 mm were tested at R=-1, at room temperature and up to 109 cycles to failure. The application of different software tools (FEMFAT, fe-safe) showed several issues based on the current results. Results showed a change of crack initiation mechanism to subsurface crack initiation at approx. 2x106 cycles to failure. The gradient based correction of the reference fatigue data showed a good applicability up to 2x106 cylces. The application of fe-safe allows the flexible modification of S/N parameters over the whole cycle range. The usage of the actual material configuration introduced several important questions regarding the fatigue data and the implementation into lifetime calculation tools.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3