Fatigue of automotive engine cylinder heads – A new model based on crack propagation

Author:

Béranger Mathieu,Morin Guillaume,Saanouni Sarah,Koster Alain,Maurel Vincent

Abstract

The main reliability issue encountered during cylinder head development is the appearance of fatigue cracks during severe endurance tests. Some of these cracks can initiate in the coolant water jacket and lead to the complete part failure. They are mainly associated with the combination of combustion pressure alternate stresses and high cycle fatigue load in infinite life domain. However, Haigh or Dang Van analysis issued from 3D Finite Element Analysis reveals several issues: crack initiations are not correctly located and scatter of crack sizes are not predicted. To overcome these difficulties, a new fatigue model dedicated to cylinder heads in Aluminum - Silicon alloy has been developed in Renault powertrain division. The model is based on fatigue crack growth modelling in order to take into account various and combined load ratio in one hand, and typical characteristics of the microstructure of casting alloy in the other hand. This paper presents the theoretical basis of this model and the associated identification methodology for two different aluminum alloys.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crack Propagation Modeling of a High-Speed Outer Rotor Motor;2024 IEEE Transportation Electrification Conference and Expo (ITEC);2024-06-19

2. Study on the failure effect analysis of IC engine cylinder head;E3S Web of Conferences;2024

3. Characteristic defects of the basic components or parts of an IC engine during prolonged operational performance;TRANSPORT, ECOLOGY - SUSTAINABLE DEVELOPMENT: EKOVarna2022;2023

4. Investigation of thermal transient behavior of block and coolant in an internal combustion engine after shutdown;Journal of Thermal Analysis and Calorimetry;2022-12-22

5. Analysis of the Main Factors Behind the Origination and Propagation of Cracks in Aluminium Cylinder Heads;2022 8th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE);2022-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3