Changing Mechanisms of Surface Relief and the Damage Evaluation of Low Cycle Fatigued Austenitic Stainless Steel

Author:

Fujimura Nao,Nakamura Takashi,Takahashi Kosuke

Abstract

To quantitatively investigate the cause of the changes in arithmetic mean roughness Ra and arithmetic mean waviness Wa of austenitic stainless steel under low-cycle fatigue loading, precise observation focusing on persistent slip bands (PSBs) and crystal grain deformations was conducted on SUS316NG. During the fatigue tests, the specimen’s surface topography was regularly measured using a laser microscope. The surface topographies were analysed by frequency analysis to separate the surface relief due to PSBs from that due to grain deformation. The height caused by PSBs and that by grain deformation were measured respectively. As a result, both of the heights rose with the increase of usage factor (UF). The amount of increase in the heights with respect to UF increased with strain range. The trend of development of both heights was similar with the trend of Ra and Wa. A comparison between Ra and the height caused by PSBs showed that these values strongly correlated with each other. A comparison between Wa and the height caused by grain deformation also showed that these values strongly correlated with each other. Consequently, the surface texture parameters Ra and Wa represent the changes in the heights of surface reliefs due to PSBs and grain deformation.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3