A comparison of multi-style DNN-based TTS approaches using small datasets

Author:

Suzić Siniša,Delić Tijana,Jovanović Vladimir,Sečujski Milan,Pekar Darko,Delić Vlado

Abstract

Studies have shown that people already perceive the interaction with computers, robots and media in the same way as they perceive social communication with other people. For that reason it is critical for a high-quality text-to-speech system (TTS) to sound as human-like as possible. However, a major obstacle in creating expressive TTS voices is that the amount of style-specific speech needed for training such a system is often not sufficient. This paper presents a comparison between different approaches to multi-style TTS, with focus on cases when only a small dataset per style is available. The described approaches have been originally proposed for efficient modelling of multiple speakers with a limited amount of data per speaker. Among the suggested approaches the approach based on style codes has emerged as the best, regardless of the target speech style.

Publisher

EDP Sciences

Subject

General Medicine

Reference21 articles.

1. Csapo A.et al, Cognitive Infocommunications, IEEE 3rd International Conference, 667-672 (2012)

2. Abe M., Progress in speech synthesis, 495-510 (1997)

3. Brave S., Clifford N., The human-computer interaction handbook, 94-109. (2002)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3