Derivation of suspended sediment data for Al-Adhiam watershed-Iraq using artificial neural network model

Author:

Al-Khafaji Mahmoud Saleh,Al-Mukhtar Mustafa,Mohena Ahmed Saud

Abstract

The mean part of river sediments is suspended sediment load, its prediction and simulation has important significance to manage the water resources and environments. In Iraq, most researchers avoid to fighting in sediment researches when related with hydrological models spatially with that need enough observed sediment data for calibration and validation because the sediment data very limitation or scars. The aim of this study is employing the Artificial Neural Network (ANN) model to estimate the suspended sediment load of Al-Adhaim watershed in Iraq from available measured sediment data, identify the suitable pattern of input and target data sampling and obtaining the best nonlinear equation between the river discharge and suspended sediment load. To this end, the ANN model was training and tested with the available sediment data, which was for water year (1983-1984). Two modes were applied for input and target data sampling each mode has two cases, where in the first mode the time series data sampling was used with flow as an input for case one while flow and average precipitation in case two with used suspended sediment as a target variable. For second mode the supervise data sampling was used with the same input and target division in first mode. The performance of the model was evaluated by using Coefficient of determination (R2) and the Nash- Sutcliffe efficiency (NS) and standardization of root mean square error (RSR), the statistical analysis model testing for Al-Adhiam watershed showed satisfactory agreement between observed and estimated daily values for Mode2- Case2. R2, NS and RSR of the testing period were 0.99 and 0.8and 0.2 respectively. The result shows that the conducted ANN model can be used with the best net as a predictor for sediment yield in this watershed. The model was used to predict daily sediment load data for period from 1Oct. 1984 to 31Spt 1985. The predicted daily sediment data was plotted against daily measured flow. The correlation between predicted sediment and measured flow was in good agreement with R2 =0.89 and the best relation was polynomial equation from second degree.

Publisher

EDP Sciences

Subject

General Medicine

Reference18 articles.

1. Abrahart R. J and White S. M., Hydrology, Oceans and Atmosphere 26.1, 19-24 (2001).

2. Al-Ansari N. Al-Shami A., F. K, Hassan H. A and Ali S., H, 5th Iraqi Geological Congress (1978).

3. Al-Ansari NA, Sayfy A, Al-Sinawi GT, Ovanessian AA, Water Res, 5.2, 173-187 (1986).

4. Al-Kadhimi A., Ahmed M., L., and Al-Mphergee R., Jordan Journal of Civil Engineering 5.2, 229-244, (2011).

5. Alp M., and Kerem Cigizoglu H., Environmental Modelling & Software 22.1, 2-13. (2007).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3