Energy Dispersive X-ray technique applied to fatigue fracture surfaces oxidation to provide information on growth rate

Author:

Hernandez Iñigo,Saunders Edward A.,Madariaga Iñaki

Abstract

Gas turbine components are strongly affected by cyclic loading during operation, which makes fatigue development the most significant cause of failure or cracking within them. The nature and growth rate of that fatigue is dependent on the stress experienced at a particular area of a part, the temperature, the material properties and the applied loading frequency. Various techniques, such as striation and/or band counting can, in some cases, provide information on fatigue life. However, often such techniques are rendered useless by lack of formation or obliteration by damage and/or oxidation of such features. Once a crack has initiated and is exposed to the engine atmosphere, the level of oxidation and other contaminant elements observed on the crack surface will evolve with time, and, correspondingly, crack depth. Element distribution analysis by an Energy Dispersive x-ray Spectroscopy (EDS) technique applied along a fatigue fracture surface could help to understand the evolution of the crack with time. Using EDS, an experimental procedure was carried out to ascertain a perceived measured percentage of oxygen plus other additional chemical species at a large number of stations along the length of a fatigue crack. The analysis was performed from the initiation site to the end of the propagation area, and also within the final rupture zone which had less time exposed to air and gasses compared to the fatigue system. An exercise of comparison between that progression in oxidation across cracked in-service components versus perceived measured oxidation level analyses on trial fracture surfaces exposed in atmospheric oven conditions at high temperatures for a number of different durations was performed. The obtained results provided information on specific questions concerning the fatigue propagation life of the in-service components; thereby amplifying the use of the EDS technique in this aspect of the materials forensic field.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3