Online Inductance and Capacitance Identification Based on Variable Forgetting Factor Recursive Least-Squares Algorithm for Boost Converter

Author:

Chen Chen,Min Run,Tong Qiaoling,Tao Shifei,Lyu Dian,Li Linkai

Abstract

The control performance of boost converter suffers from the variations of important component parameters, such as inductance and capacitance. In this paper, an online inductance and capacitance identification based on variable forgetting factor recursive least-squares (VFF-RLS) algorithm for boost converter is proposed. First, accurate inductance and capacitance identification models and the RLS algorithm are introduced. In order to balance the steady-state identification accuracy and parameter tracking ability, a forgetting factor control technique is investigated. By recovering system noise in the error signal of the algorithm, the value of forgetting factor is dynamically calculated. In addition, since the sampling rate is much lower than the existing identification methods, the proposed algorithm is practical for low-cost applications. Finally, the effectiveness of the proposed algorithm is verified by experiment. The experiment results show that the algorithm has good performance in tracking inductance and capacitance variations.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3