Simulation on Spacecraft Formation Flight and Formation Reconfiguration

Author:

Ye Yan Chao Li,Yang Yue-neng

Abstract

Spacecraft formation flight refers to two or more spacecraft according to a certain formation or arrangement of flight, it has important application value for deep spatial exploration, spatial science experiment, ground investigation and military and so. This paper studies the spacecraft formation flight design and formation reconfiguration based on STK. Firstly, the Clohessy-Wiltshire (CW) equation is used to describe the relative motion of the near-circular orbit and deduce the relative orbital dynamics model. Then, based on the dynamic method of the CW equation, the spatial circular formation is designed and the STK is applied to simulate it. Finally, based on the above formation, a simple multi-impulse formation reconfiguration is performed and the simulation test is verified by STK. The simulation results show that the absolute error of orbital elements of the spacecraft is calculated by the relative orbital dynamics model is less than 10-5, and the expected formation can be completed under the condition of two-body environment, and the feasibility of simple multi-pulse formation reconfiguration is proved successfully.

Publisher

EDP Sciences

Subject

General Medicine

Reference10 articles.

1. Yunhe Meng. Spacecraft formation flight introduction [M], Beijing: National defense industry press, 2014.

2. Computing Minimum-Power Dipole Solutions for Interdipole Forces Using Nonlinear Constrained Optimization With Application to Electromagnetic Formation Flight

3. Seo Joongbo, Kim Youdan.Collision Avoidance Strategies for Unmanned Aerial Vehicles in Formation Flight[J],IEEE Transactions on aerospace and electronic systems,0018-9251(c),2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3