Strength of composite plate with parallel offset misalignment double-bolted joint under bending moment

Author:

Krajangsawasdi Narongkorn,Bunyawanichakul Phacharaporn

Abstract

The connection concept of placing only two bolts in offset misalignment against the bending load along the wing span was used for an aerobatic airplane designed in Thailand as a KIT plane to minimize the impact of drilling numerous holes. This concept can deviate the force direction on the holes. The two suitable drilling positions should have the lowest resultant force and highest strength of fiber reinforcement structure. To investigate the strength of the fastener hole when the force deviated from the original orientation, specimens, made from twill weave carbon fiber-epoxy and laid up at ±45-degree orientation, were tested under bearing load according to ASTM D5961 standard. The experimental results revealed that the bearing strength of CFRP material decreases when the force deviation angle increases, so zero-angle deviation of the resultant force on the drilling hole is the most suitable orientation to absorb bolt bearing load. The most suitable pattern of two offset misalignment holes is the greatest horizontal distance at zero vertical distance when it was considered only the effect of the bearing strength and the deviation angle. Moreover, the failure pattern begins to deviate along the fiber orientation when the inclination angle increased.

Publisher

EDP Sciences

Subject

General Medicine

Reference12 articles.

1. Lancair International. Center wing section installation, URL: http://lancair.com/docs-lancair-legacy, accessed on 1/06/2017 (2017)

2. Falcomposite. Furio ln 27 RG, URL: www.falcom posite.co/furio-rg.php, accessed on 1/06/2017 (2017)

3. Simplified Procedures for Designing Composite Bolted Joints

4. Nelson W.D., Bunin B.L. and Hart-Smith L.J., Critical joints in large composite aircraft structure. Technical report, McDonnell Douglas Corp (1983)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3