Automating Loading and Locking of New Generation Air-cargo Containers

Author:

Bolanakis Georgios,Machairas Konstantinos,Koutsoukis Konstantinos,Mastrogeorgiou Athanasios,Loupis Michael,Papadopoulos Evangelos

Abstract

In this paper, an outline of NTUA’s work in the framework of project INTELLICONT is presented. We describe the current state of the air-cargo handling procedures and how the autonomous system that is under development is going to simplify these and increase the overall efficiency. Important issues and challenges regarding the system's development are discussed and a preliminary design of the novel robotic platform is given. The main tasks of this platform include the autonomous motion and locking of containers with mass exceeding one tone, avoiding at the same time obstacles and surpassing terrain discontinuities. Information regarding the selected actuators and other key electrical components, such as motor drivers and sensors are provided also. The architecture of the embedded system and the specifications of the selected Central Control Unit are described, as well as the integration of the motor drivers, sensors and other peripherals with the Robot Operating System (ROS). Further details on the development of a high accuracy localization system, which is mandatory to lock the container safely to the corresponding positions are provided also. In addition, we give details regarding the locking mechanism with integrated monitoring functionalities, an important part of the system. Simulation experiments validate the selected position controller and key system specifications are highlighted based on results. Finally, recent prototype experiments conducted to verify the localization system are presented.

Publisher

EDP Sciences

Subject

General Medicine

Reference16 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Design of Power Drive Unit Layout Based on Improved Discrete Particle Swarm Optimization;Lecture Notes in Electrical Engineering;2023

2. Topology Design of Aircraft Cargo Loading Control System;Lecture Notes in Electrical Engineering;2022-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3