Linked Data Architecture for Assistance and Traceability in Smart Manufacturing

Author:

Friedemann Marko,Wenzel Ken,Singer Adrian

Abstract

Traceability systems and digital assistance solutions are becoming increasingly vital parts of modern manufacturing environments. They help tracking quality-related information throughout the production process and support workers and maintenance personnel to cope with the increasing complexity of manufacturing technologies. In order to support these use cases, the integration of information from different data sources is required to create the necessary insights into processes, equipment and production quality. Common challenges for such integration scenarios are the various data formats, encodings and software interfaces that are involved in the acquisition, transmission, management and retrieval of relevant product and process data. This paper proposes a Linked Data based system architecture for modular and decoupled assistance software. Its web-oriented approach allows to connect two usually disparate data sets: semantic descriptions of complex production systems on the one hand and high-volume and high-velocity production data on the other hand. The proposed concept is illustrated with a typical example from the manufacturing domain. The described End-of-Line quality assessment on forming machines is used for traceability and product monitoring.

Publisher

EDP Sciences

Subject

General Medicine

Reference13 articles.

1. Hankel M., Rexroth B., The reference architectural model industrie 4.0 (RAMI 4.0), ZVEI, April (2015)

2. Lin S.W., Miller B., Durand J., Joshi R., Didier P., Chigani A., Torenbeek R., Duggal D., Martin R., Bleakley G. et al., Industrial internet reference architecture, Industrial Internet Consortium (IIC), Tech. Rep (2015)

3. Berners-Lee T., Linked data – design issues (2006), http://www.w3.org/DesignIssues/LinkedData.html

4. Bizer C., Heath T., Berners-Lee T., Linked data-the story so far, International journal on semantic web and information systems 5, 1 (2009)

5. The SSN ontology of the W3C semantic sensor network incubator group

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3