Axiomatic design and virtual verification for blackbody cavity sensor

Author:

Cheng Jiangfeng,Juang Chia-Feng,Chen Weihai,Mei Guohui

Abstract

The blackbody cavity sensor for continuous temperature measurement of molten steel has been widely used in steel industry. However, due to the closed bottom of the inner tube, the temperature measurement accuracy is seriously affected. It’s urgent to redesign and improve the sensor, which involves multidisciplinary knowledge, including materials, heat and flow science. This paper first clarifies the relationship between sensor functional requirements and various physical structure parameters from the perspective of axiomatic design. On this basis, the virtual models of the blackbody cavity sensor are established, including geometry model, multi-physical field model, material physical properties and boundary conditions. And then through comparison between experiment and simulation, it is found that for the temperature measurement accuracy, the deviations between the simulation and the actual experimental result are less than 1.5℃. This verifies the accuracy of the virtual model.

Publisher

EDP Sciences

Subject

General Medicine

Reference24 articles.

1. Spectral and total effective emissivity of a nonisothermal blackbody cavity formed by two coaxial tubes

2. Effective emissivity of a blackbody cavity formed by two coaxial tubes

3. NIST-JANAF Thermochemical Tables. http://kinetics.nist.gov/janaf.

4. Suh N.P., Axiomatic Design - Advances and Applications (Oxford University Press, New York, 2009).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3