Recirculating flows analysis and estimation inside channels

Author:

Georgantopoulou Christina G.,Vasilikos Nikolaos S.,Georgantopoulos George A.

Abstract

The recirculation which is developed during the flows inside pipes present a high interest in many industrial applications. In the present paper, a Cartesian grid method is presented which can be applied in pipes geometry approximation, even if the solid bounds are not lying on grid lines. A refinement technique using rectangular nested sub-girds is applied in order to avoid the unnecessary grid cells in the areas with no particular flow interest and cluster the grid when is needed. Important and useful for the industries results are extracted by these numerical simulations and estimations regarding the exact position and extend of the recirculation zones and the relating points. The estimation is taking placefor incompressible laminar, viscous flows inside inclined step channelsfor a range of inclination angles and Reynolds numbers values. The Navier – Stokes equations are solved using the artificial compressibility method according to the necessary boundary conditions arrangement. Flow results are presented for several grid sizes and Reynolds numbers focused on the recirculationzones length, in upper and lower channel’ walls. Accepted accuracy of the flow results is produced using the aforementioned refinement algorithm, while the flow zones can be located according to the inlet flow rate, in order to avoid possible problems in the industries as corrosion or energy losses.

Publisher

EDP Sciences

Subject

General Medicine

Reference23 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3