Author:
Ni Xubin,Yin Lirong,Chen Xiaobing,Liu Shan,Yang Bo,Zheng Wenfeng
Abstract
In the field of visual reasoning, image features are widely used as the input of neural networks to get answers. However, image features are too redundant to learn accurate characterizations for regular networks. While in human reasoning, abstract description is usually constructed to avoid irrelevant details. Inspired by this, a higher-level representation named semantic representation is introduced in this paper to make visual reasoning more efficient. The idea of the Gram matrix used in the neural style transfer research is transferred here to build a relation matrix which enables the related information between objects to be better represented. The model using semantic representation as input outperforms the same model using image features as input which verifies that more accurate results can be obtained through the introduction of high-level semantic representation in the field of visual reasoning.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献