Performance Characteristics of Asphalt Binders containing Sodium-Alginate Hollow Fibers and Recycled Materials

Author:

Aguirre Max A.,Hassan Marwa M.,Shirzad Sharareh,Mohammad Louay N.,Cooper Samuel B.,Negulescu Ioan I.

Abstract

Self-healing products such as hollow-fibers filled with an asphalt rejuvenator present an emerging technology that would enhance an asphalt mixture’s resistance to cracking damage. The objective of this study was to evaluate the rejuvenating efficiency of sodium-alginate fibers containing a rejuvenator product using asphalt binder blends containing extracted binder from recycled materials. The effects of adding extracted binder from recycled materials and sodium-alginate fibers on asphalt binder blends were evaluated by conducting a series of chemical and binder tests. HP-GPC and FTIR test results showed that the addition of fibers in blends containing recycled materials resulted in an increase in the HMW/LMW ratios. Some of the added polymeric fibers are thought to have increased the HMW fraction, thus leading to increase in the HMW/LMW ratio. The increase of the HMW fraction suggests that some of the fibers, which are polymers, caused the increase in the HMW/LMW ratios. MSCR test results showed that a binder blend with extracted binder from recycled materials and sodium-alginate fibers would have less rutting susceptibility than a conventional virgin binder would.

Publisher

EDP Sciences

Subject

General Medicine

Reference13 articles.

1. Brownride J. The role of an asphalt rejuvenator in pavement preservation: use and need for asphalt rejuvenation. Tricor Refining, LLC.

2. Laboratory Performance of Asphalt Mixtures Containing Recycled Asphalt Shingles

3. Karlsson R., and Isacsson. U. (2006). Material-related aspects of asphalt recycling-state of the art. Journal of Materials in Civil Engineer, 18.

4. Booshehrian A., Mogawer W.S., and Vahidi S. (2013). Evaluating the Effect of Rejuvenators on the Degree of Blending and Performance of High RAP, RAS, RAP/RAS Mixtures. Road Materials and Pavement Design.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3