The study of the interlock of ballast in triaxial geogrids

Author:

Pires Diogo,Barroso Madalena,Fontul Simona,Dimitrovová Zuzana

Abstract

Rail transport is the most efficient way of transport from an energetic and environmental point of view. The integration of geosynthetics in the rehabilitation solutions has grown substantially in the last decade, such as the application of different geogrids for reinforcement and/or stabilization of ballast layer. It appears to be consensual that the effectiveness of the geogrid depends on the degree of interlock between the geogrid and the granular material. The main purpose of this study is to analyse the relation between the geogrid aperture size and the ballast size that maximizes the interlock. The influence of the geogrid location in the ballast layer and the ballast grading are also addressed. The results suggested that, in order to obtain a higher interlock percentage, a selected ballast layer, with a reduced maximum dimension, should be used in contact with the geogrid and the geogrid should be placed in the ballast layer, above the interface ballast/substructure. The results suggested that the relation between the geogrid aperture size and the maximum dimension of the aggregate should be around 1.22 in order to improve the interlock.

Publisher

EDP Sciences

Subject

General Medicine

Reference18 articles.

1. Plano Estratégico dos Transportes e Infraestruturas 2014-2020, Gabinete do Secretário de Estado das Infraestruturas, Transportes e Comunicações, Ministério da Economia (2014);

2. Liu S., Huang H., Qiu T., Kwon J. (2016), Transport. Resear. Board Annual Meeting (2016);

3. Cook J., Belyaev V. S., Ashpiz E. S., Proceed. Railway Eng. (2015);

4. Cook J., Hornicek L., Conference: Railway Engineering 2013 (2013);

5. The lateral displacement response of geogrid-reinforced ballast under cyclic loading

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3