Stenosis Detection with Deep Convolutional Neural Networks

Author:

Antczak Karol,Liberadzki Łukasz

Abstract

Recent popularity of deep learning methods inspires to find new applications for them. One of promising areas is medical diagnosis support, especially analysis of medical images. In this paper we explore the possibility of using Deep Convolutional Neural Networks (DCNN) for detection of stenoses in angiographic images. One of the biggest difficulties is a need for large amounts of labelled data required to properly train deep model. We demonstrate how to overcome this difficulty by using generative model producing artificial data. Test results shows that DCNN trained on artificial data and fine-tuned using real samples can achieve up to 90% accuracy, exceeding results obtained by both traditional, feed-forward networks and networks trained using real data only.

Publisher

EDP Sciences

Subject

General Medicine

Reference16 articles.

1. Goodfellow I., Bengio Y. and Courville A., Deep Learning, MIT Press, (2016)

2. Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A. C. and Fei-Fei L., ImageNet Large Scale Visual Recognition Challenge, IJCV, (2015)

3. June-Goo L., Sanghoon J., Young-Won C., Hyunna L., Guk Bae K., Joon Beom S. and Namkug K., Deep Learning in Medical Imaging: General Overview, Korean Journal of Radiology, (2017)

4. Geert L., Thijs K., Babak Ehteshami B., Arnaud Arindra A. S., Ciompi F., Ghafoorian M., van der Laak J., Van Ginneken B. and Sanchez C., A Survey on Deep Learning in Medical Image Analysis, Nijmegen: Diagnostic Image Analysis Group, (2017)

5. Marcovitch H., Ed., “Stenosis,” in Black's Medical Dictionary: 41st Edition, Londow, A & C Black Publishers Limited, (2005)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3