A Review of Hydride Precipitates in Titanium and Zirconium Alloys: Precipitation, Dissolution and Crystallographic Orientation Relationships

Author:

CONFORTO Egle,FEAUGAS Xavier

Abstract

This work proposes a review of recent results on the formation and dissolution of hydrides in HCP alloys (Ti and Zr alloys) correlated to the nature of crystallographic hydride phases and their ORs. The crystallographic coherence observed between the surface hydride layer and the substrate is very important for many applications as for biomaterials devices. Five particular orientation relationships (OR) were identified between titanium/zirconium hydride precipitates and the oc-Ti and a-Zr substrates. In addition, the nature of hydrides have a large implication on the ductility, the strain hardening, and the local plastic strain accommodation in the Ti alloys. Our studies using XDR, TEM and SEM-EBSD have been demonstrating that the nature of the hydride phase precipitates depends on the hydrogen content. DSC has been used to obtain the hydride dissolution and precipitation energy values at the bulk scale, whose difference can be associated to misfit dislocations. Local in-situ TEM dissolution observations show the depinning of part of misfit dislocations during dissolution process. Hydride reprecipitation is thus possible only if hydrogen is not driven away during heating by misfit dislocations depinning.

Publisher

EDP Sciences

Subject

General Medicine

Reference51 articles.

1. Khoda-Bakhsh R., Ross D.K., J. Phys. F: Met. Phys. 12 (1982) 15-24.

2. Atomic-scale Ab-initio study of the Zr-H system: I. Bulk properties

3. Mueller W.M., Blackledge J.P., Libowitz G.C., Metal Hydrides (1968) Academic Press, New York.

4. Dislocation-hydride interactions at low plastic strain in titanium

5. Feaugas X., Conforto E., PlastOx 2007, EDP Sciences (2009) 161-178.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3