Controlling of mechanical property in additive manufactured porous titanium by structural control and alloying for bone substitutes

Author:

Ueda Masato,Ikeda Masahiko

Abstract

Mechanical properties of metallic materials can be controlled by not only alloy design but also constructing appropriate structure. A porous material with adequate pore structure showing appropriate mechanical properties has long been sought as the ideal bone substitute, because it exhibits low Young’s modulus and bone ingrowth. Additive manufacturing (AM) can produce metallic tailor-made products such as artificial bone, several joints etc. The purpose of this work was to control the mechanical property of porous Ti by controlling the porous structure. In addition, the characteristics of Ti-Zr-Fe alloys were also investigated as the materials for the AM. First, porous polylactic acid with rhombicuboctahedron-derived structure was prepared by a 3D printer to determine appropriated structure for bone substitutes. The compressive strength and Young’s modulus was strongly influenced by the minimum cross-sectional area fraction perpendicular to the loading direction. Then the porous Ti with similar structures were prepared by a laser AM. The strength and Young’s modulus were extremely low compared with the expected ones. Then Ti-xmass%Zr-1mass%Fe alloys (x=0, 5, 10) were prepared as the materials for the AM. Vickers hardness increased almost linearly with Zr content by solution hardening. Ideal bone substitutes would be produced by such structural design and alloying.

Publisher

EDP Sciences

Subject

General Medicine

Reference14 articles.

1. Experiment study on fracture fixation with low rigidity titanium alloy

2. Ahmed T., Long M., Silvestri J., Ruiz C. and Rack H.J., in Titanium’95: Science and Technology, Blenkinsop P.A., Evans W.J. and Flower H.M., eds., The Institute for Materials, Birmingham, UK (1996) pp. 1760-1767.

3. Design and mechanical properties of new β type titanium alloys for implant materials

4. Mechanical properties of porous Ti–15Mo–5Zr–3Al compacts prepared by powder sintering

5. Processing of biocompatible porous Ti and Mg

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3