Effect of Stress Ratio and Notch on Fatigue Strength of Commercial Pure Titanium

Author:

Toshiaki IWATA

Abstract

Titanium alloys such as Ti-6Al-4V are widely used in the aerospace domain worldwide; consequently, they have been extensively investigated, and the accumulated data has facilitated their use in the construction of structural members. In contrast, commercial pure (CP) Ti, which is cheaper than Ti alloys is widely used in the general industry, especially in the marine domain in Japan because it exhibits superior seawater corrosion resistance and biocompatibility. However, CP titanium has a strong anisotropy and consists of an hcp crystal structure; therefore, the strength data are insufficient owing to its short use history as a structural material, and some of its mechanical material properties remain unclear. Herein, the effect of mean stress and stress concentration on the fatigue strength of CP Grade 2 titanium was evaluated for the application range expansion of CP titanium. The results indicated that the fatigue limit in the longitudinal direction was 80–84% that in the transverse direction for smooth specimens. However, no significant difference was noted in the fatigue limit in both the directions for notched specimens. Furthermore, it was noted that it is necessary to apply at least Sa-0.5Su line to design the safe side in CP Grade 2 titanium.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3