Stress partitioning in a near-β Titanium alloy induced by elastic and plastic phase anisotropies: experimental and modeling

Author:

PURUSHOTTAM RAJ PUROHIT Ravi raj purohit,LHADI Safaa,GEY Nathalie,CASTELNAU Olivier,RICHETON Thiebaud,GERMAIN Lionel,BERBENNI Stephane

Abstract

The load transfer induced by the elastic and plastic phase anisotropies of a Ti–10V–2Fe–3Al titanium alloy is studied. The microstructure consists in α nodules embedded in elongated β grains. EBSD performed on the alloy shows no crystallographic texture neither for α nor β phase. Tensile tests along the elongation direction, at a strain rate of 2 x 10-3 s-1 give a yield stress of 830 MPa with 13% ductility. Simulations based on an advanced two-phase polycrystalline elasto-viscoplastic self-consistent (EVPSC) model predict that the β phase first plastifies with a sequential onset of plasticity starting from <110> oriented β grains, then <111> and finally <100> oriented β grains. This leads to a strong load transfer from the β grains to the α nodules whose average behavior remains elastic up to high stresses (~940 MPa). However, additional simulations considering exclusively β grains of specific orientation show that the behavior of α nodules is strongly dependent on the β texture in which they are embedded. Especially, in <001> β grains, which plastify the latest, the model predicts the onset of plasticity in favorably orientated α nodules. Moreover, the orientation spread within the β grains can modify the average plastic behavior of α phase. In future, these results will be compared to data obtained from in-situ High Energy XRD and SEM/EBSD experiments.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3