A Method for the Production of Titanium-Tantalum Binary Alloys Using the Metalysis-FFC Process

Author:

Howell Robert J.,Benson Marshall Luke A.,Jackson Martin,Wynne Brad P.

Abstract

Titanium-tantalum alloys have historically been difficult to produce using conventional techniques due to the large difference in melting point and poor interdiffusivity rates of the two elements, leading to large levels of segregation. In this work we have investigated using the Metalysis-FFC process to overcome this problem. The Metalysis-FFC process is an electrochemical process where metal oxides are reduced by acting as a cathode in an electrolytic cell combined typically with a graphite anode and molten calcium chloride electrolyte. Previous work has proven that the process works when applied to mixed oxides to produce alloys. The reduction process is performed in the solid state and so negates the problems associated with traditional melting practices such as segregation and evaporation losses. In this work we have been able to successfully produce a range of Ti-Ta alloy powders from pure titanium to pure tantalum in 10 wt% increments using the Metalysis-FFC process. Moreover, energy dispersive spectroscopy analysis of the powders suggests uniform distribution of titanium and tantalum within all compositional ranges, suggesting the Metalysis-FFC process has the potential to be a transformative manufacturing methodology for producing titanium-tantalum alloys.

Publisher

EDP Sciences

Subject

General Medicine

Reference11 articles.

1. Tietz T.E. and Wilson J.W., Behavior and properties of refractory metals: Stanford University Press, 1965.

2. Dibbern J.C., “Interdiffusivity in Titanium-Tantalum Alloys Processed at 1473 K,” Bachelor of Science, Materials Science and Engineering, Massachusetts Institute of Technology, 2007.

3. Gortikov B., “Effects of processing on microstructure and properties of Ti-Ta Alloys,” Massachusetts Institute of Technology, 2008.

4. Electrochemical reduction of cerium oxide into metal

5. Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3