Ocean Wave-Structure Interaction of Two Wave Energy Converters in Malaysian Water

Author:

ChengYee Ng,Adha Tuhaijan Siti Nor,Kurian Velluruzhathil John,Loon Lim Wai

Abstract

Due to rapid urbanization and industrialization, the consumption of electricity in the world is expected to increase, thus leads to the fast development of the renewable energy industry. In 2016, 24.5% of the electricity is produced by renewable energy. There are several types of renewable energy, e.g. solar, wind, and ocean wave. The ocean wave energy is identified to have the greatest potential for electricity generation. There are various types of wave energy converter (WEC) that have been designed for harnessing the wave energy, e.g. the oscillating water column, salter duck, point absorber, water dagon etc. Due to the smaller dimension, the point absorber is the most suitable WEC to be deployed in an array configuration, whereby each isolated WEC interacts and alters the vicinity of the wave formation by absorbing, radiating, and diffracting the wave. Subsequently, the wave interference will also affect the WEC’s performance. The objective of the present study is to investigate the optimum separation distance, d, that would resulting to an optimum performance between two WECs in an array configuration using a computational fluid dynamics (CFD) software. The analysis considered an isolated WEC and two WECs, i.e. the heaving point absorbers with three point catenary mooring lines. The influence of the separation distance towards diffraction and response amplitude operator (RAO) of an array of two WECs was evaluated. The optimum production of the wave energy by the heaving point absorber is observed to be highly dependant on the relative heave motion of the two WECs [1]. In the present study, it shows that the optimum distance between two WECs in an array configuration is 20 m, whereby the maximum heave RAO were identified.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3